
Parallelizing Pauli Paths (P3):

GPU-Accelerated Quantum Circuit Simulation

Final Project Report

Arul Rhik Mazumder
arulm@andrew.cmu.edu

Daniel Ragazzo
dragazzo@andrew.cmu.edu

15-418/618 Parallel Computer Architecture and Programming
Carnegie Mellon University

December 15, 2025

https://arulrhikm.github.io/Parallelizing-Pauli-Paths/report.html

Abstract

We present a GPU-accelerated implementation of the Pauli path propagation algorithm for
quantum circuit simulation. Our CUDA implementation achieves speedups of up to 626× over a
single-threaded CPU baseline on circuits with 1000+ initial Pauli words, with an average speedup of
213× across our stress test suite. Key contributions include a multi-block dynamic work distribution
algorithm, efficient inter-block coordination through word-count-only transfers, and parallel trunca-
tion using prefix sums. We provide a comprehensive analysis of performance characteristics, scaling
behavior, and limiting factors across diverse circuit configurations.

1 Summary

We implemented a GPU-accelerated Pauli path propagation algorithm for quantum circuit

simulation using CUDA on NVIDIA GPUs and compared it against a single-threaded CPU

baseline in C++. Our CUDA implementation on the GHC cluster machines (NVIDIA GeForce

RTX 2080 GPUs) achieves speedups of up to 626× on large-scale simulations, with an average

speedup of 213× across our stress test suite containing circuits with 500–30,000 initial Pauli

words and 50–500 layers.

Project deliverables include:

• Fully functional CPU simulator (pauli.cpp, ∼436 lines) serving as single-threaded base-

line

• GPU simulator using CUDA (pauli_gpu.cu with device operations in gates.cu_inl)

• Comprehensive test suite with 34+ test cases validating numerical correctness

https://arulrhikm.github.io/Parallelizing-Pauli-Paths/report.html

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

• Performance benchmarks comparing CPU vs GPU across various circuit configurations

• Python visualization tools demonstrating Pauli word dynamics and performance charac-

teristics

All implementations run on GHC cluster machines with NVIDIA GeForce RTX 2080 GPUs.

2 Background

2.1 Motivation

In quantum computing, a central computational task is estimating expectation values of observ-

ables. Given a quantum circuit U that prepares a state |ψ⟩ = U|0⟩, we seek to compute:

⟨Ĥ⟩ = ⟨ψ|Ĥ|ψ⟩ = ⟨0|U†ĤU|0⟩ (1)

where Ĥ is the observable of interest, typically decomposed as a sum of Pauli words [1].

This expectation value is fundamental in quantum algorithms such as variational quantum

eigensolvers for quantum chemistry (determining molecular energy levels) and quantum

approximate optimization algorithms for combinatorial problems.

Classical simulation of quantum circuits faces exponential state space growth—an n-qubit

system requires tracking 2n complex amplitudes. For example, a 50-qubit system requires

1015 complex numbers (approximately 16 petabytes of memory), making direct state-vector

simulation infeasible. The Pauli path method offers an alternative approach that can be more

tractable for certain circuit types by tracking the evolution of observables rather than the full

quantum state [2].

2.2 Pauli Words and Observables

A Pauli word is a tensor product of single-qubit Pauli matrices {I, X, Y, Z} acting on each qubit.

For an n-qubit system, a Pauli word has the form:

P = P1 ⊗ P2 ⊗ · · · ⊗ Pn, Pi ∈ {I, X, Y, Z} (2)

The Pauli matrices represent: I (identity), X (bit-flip), Y (combined bit and phase flip), Z
(phase-flip). Any observable Ĥ can be expressed as a linear combination of Pauli words:

Ĥ = ∑
i

ciPi (3)

where ci are complex coefficients. For example, the Hamiltonian for the hydrogen molecule can

be expressed as a sum of approximately 100 Pauli words.

2.3 Key Data Structures

Our implementation centers on two primary data structures:

2

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

PauliWord: Contains a vector of Pauli operators (one per qubit, encoded as enum: I = 0, X = 1,

Y = 2, Z = 3) and a complex phase coefficient. For a 10-qubit system: 10 bytes for operators +

16 bytes for coefficient (two doubles) = 26 bytes total.

Gate: Represents quantum gates with gate type (Hadamard, CNOT, RX, RY, RZ, S, T), target

qubits (1-2 integers), and rotation angle for parametric gates. Total size approximately 16 bytes

per gate.

2.4 Key Operations

• Gate Conjugation (computationally expensive): Each Pauli word is transformed via P′ =

G†PG. Clifford gates (H, CNOT, S) produce exactly one output word with deterministic

transformations. The T gate also produces a single output but with complex phase factors.

Non-Clifford rotation gates (RX, RY, RZ) produce a linear combination of two Pauli words

based on trigonometric expansions (e.g., X
RZ(θ)−−−→ cos(θ)X + sin(θ)Y), causing word

splitting and potential exponential growth.

• Weight-Based Truncation (memory control): The weight of a Pauli word equals the

number of non-identity components. For example, I ⊗ X ⊗Y ⊗ I has weight 2. Truncation

discards words exceeding a weight threshold, necessary because k rotation gates can

produce up to 2k terms.

• Expectation Value Computation (final step): After propagating through all gates, the

final expectation value is computed by summing the coefficients of all surviving Pauli

words. In our implementation, this is simplified to sum all word coefficients weighted by

their phases.

2.5 Algorithm Input and Output

Inputs:

• Quantum circuit: Sequence of 10-100+ gates

• Initial observable: 1-1000+ Pauli words with coefficients

• Maximum weight threshold: Typically 4-8

Output: Complex number representing ⟨Ĥ⟩

2.6 Parallelism Analysis

The Pauli path algorithm exhibits significant parallelization opportunities:

• Data Parallelism: Each Pauli word evolves independently under gate application with

zero inter-word dependencies—thousands of words can be processed simultaneously.

This is where > 90% of computation time is spent.

3

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

• Dependencies: Gates must be applied in reverse order—all words must complete gate

g before gate g − 1 begins. This creates sequential dependency between gates but not

within a gate.

• SIMD Amenability: Clifford gates achieve near-perfect SIMD execution since all threads

perform the same transformation. Non-Clifford gates introduce branch divergence since

some words split while others remain single (estimated 20–30% warp efficiency loss based

on profiling).

• Locality: Each word accesses only its own data plus shared gate information, enabling

coalesced memory access patterns.

• Workload Growth: With N initial words and k non-Clifford gates, worst-case count is

N · 2k, motivating truncation strategies.

The computational bottleneck is gate conjugation applied to large numbers of words—

perfectly suited for GPU parallelization due to high parallelism, moderate arithmetic intensity,

and regular memory access patterns.

Figure 1: Pauli word count evolution through circuit execution showing three circuit compositions.
Clifford-only: constant word count. Mixed: moderate growth from occasional rotations. Rotation-
heavy: exponential expansion requiring truncation to control memory.

4

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

Figure 2: Per-gate transformation rules. Clifford gates (H, CNOT, S) and T gate produce one output
word each. Rotation gates (RX, RY, RZ) produce two terms—explaining the word count growth patterns
shown in Figure 1.

3 Approach

3.1 High-Level Overview

Our final solution implemented the Pauli Path Simulation using CUDA programming to unlock

performance on the GPU. At a high level, the algorithm maintains a collection of Pauli words

(each composed of multiple individual Pauli terms) and their corresponding coefficients, which

must be transformed in memory for each specified gate. We parallelized these words and their

coefficients so that each thread was responsible for transforming one Pauli word.

Crucially, the number and persistence of these terms can change during execution through

two mechanisms:

1. Rotation gate splitting: Non-Clifford gates (RX, RY, RZ) cause certain Pauli words to

“split” and become two separate Pauli words with different coefficients.

2. Truncation: After each gate application, weight-based truncation reduces the number of

Pauli words we consider in the next step.

All gate transformations and truncation operations were done cooperatively within thread

blocks using shared memory to improve performance. This also meant global memory had

to be updated semi-regularly to ensure consistency between multiple thread blocks. Imple-

menting this inter-block coordination efficiently became the main concern for achieving good

performance.

3.2 Technologies Used

• Languages: C++ for CPU, CUDA C++ for GPU

• APIs: CUDA Runtime API, cuComplex library

• Build System: Makefile with NVCC compiler (-O3 -arch=sm_75)

5

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

• Target Hardware: GHC machines with NVIDIA GeForce RTX 2080 (8GB VRAM, 2944

CUDA cores, 46 SMs)

• Tools: CUDA-GDB, Nsight Compute, nvprof

• Visualization: Python with Matplotlib

3.3 CPU Baseline Implementation

Our CPU implementation (pauli.cpp, ∼436 lines) uses std::map<PauliWord, Complex> for

automatic deduplication. It processes gates in reverse order, applying conjugation rules se-

quentially with weight-based truncation after each non-Clifford gate. Time complexity is

O(N · D · (q + log N)) where N is word count, D is circuit depth, and q is qubit count.

The main difference between CPU and GPU implementations: the CPU version uses a

hashmap to keep track of all words (enabling automatic deduplication), while our GPU version

uses raw arrays that can be operated on in parallel where each thread handles a single Pauli

word.

3.4 GPU Memory Layout

We use the following constants throughout our memory analysis:

• q = number of qubits in the quantum circuit

• T = threads per thread block (256 in our implementation)

• B = maximum number of thread blocks (400 in our implementation)

Note that each Pauli term is one byte, and a Pauli word has q terms, so each Pauli word

occupies q bytes. The coefficient is 2 doubles to represent a complex value, so 16 bytes for each

Pauli word as well.

3.4.1 Shared Memory Organization

Each thread block had its own shared memory it used to actually perform the gate operations,

and crucially rearrange and count the Pauli words remaining after truncation. This meant each

thread block ultimately required:

• Pauli word storage: 2 × T × q bytes—each thread started with one word and could finish

with two after a rotation gate

• Coefficient storage: 2 × T × 16 bytes for the complex coefficients

• Prefix sum buffers: T × 8 bytes—we used the exact prefix sum implementation from

Assignment 2 [6], just with uint16_t instead of a full uint to generate proper offsets for

each thread to move each Pauli word to its new location

6

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

Total shared memory per block: (2q + 40)× T bytes

This shared memory requirement ended up being the main barrier to getting more work

done on an individual thread block. A critical function of shared memory is ensuring that valid

Pauli words remain adjacent in memory after truncation, so future threads would automatically

know what was a valid position.

3.4.2 Global Memory Organization

Global memory was laid out such that each potential thread block had its own region of a large

array which it could read and write to without having to communicate with other thread blocks:

• Pauli word array: 2 × T × q × B bytes total. Because in the worst case (after a rotation

gate), one might have to write 2 × T Pauli words, each block had a region of 2 × T × q
bytes it could write its shared memory to before exiting.

• Coefficient array: 2 × T × 16 × B bytes total, similarly partitioned.

• Gate information: Arrays storing gate types, what qubits they affected, and the angles of

the rotation gates.

• Word count array: B integers where each thread block wrote to an individual index to

communicate to future iterations how many Pauli words were in their section of global

memory.

• Gate index: A single integer updated at each iteration to specify what index in the gate

array should be started at.

Key design principle: Each block owns non-overlapping memory regions, eliminating inter-

block synchronization during gate operations.

3.5 Mapping to GPU Hardware

We assign one CUDA thread per Pauli word, enabling parallel evolution of thousands of words

simultaneously. Thread blocks of 256 threads process words in parallel, chosen to balance

occupancy against shared memory availability.

For 10,000 words with 10 qubits:

• 10,000 threads total (one per word)

• ∼40 thread blocks of 256 threads each

• Each block uses ∼15KB shared memory

• Blocks execute independently across 46 SMs

7

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

3.6 Algorithm and Operations

Our algorithm matched the basic CPU implementation fairly closely. Initially, we only had

a single thread block so that we could avoid inter-thread block communication altogether.

However, as stated earlier, the large memory requirements meant that we could not actually

operate on all that many Pauli words at a time (and thus got virtually no speedup compared to

an unoptimized CPU).

3.6.1 Initial Single-Block Approach (Abandoned)

Single thread block with all words in shared memory. Limited to ∼256 words (MAX_PAULI_WORDS

= 512 with 2× factor for rotation gates) due to 48KB shared memory limit. Achieved only 1.1–

1.5× speedup—insufficient parallelism.

3.6.2 Multi-Block Dynamic Algorithm (Final Approach)

To overcome the single-block limitation, we implemented the multi-block dynamic algorithm

where each thread block can dynamically find which words from global memory to use, operate

on them using shared memory to make the application and truncation faster, and then exit the

kernel:

1. Each thread block dynamically determines which Pauli words to load from global memory

2. Loads words into shared memory for fast access

3. Applies gate transformations in parallel (each thread processes its assigned word)

4. Performs parallel truncation using prefix sum

5. Exits on rotation gates or when capacity is exceeded

6. Writes results to dedicated global memory regions

7. CPU reads only word counts (not full word data—this is the critical optimization)

8. CPU launches next kernel with updated configuration and block count

Critical optimization: The CPU only has to load the number of words each thread block

finished, not the words themselves. This drastically decreases the memory bandwidth between

the CPU and the GPU—transferring just B integers (∼1.6KB for B = 400) instead of potentially

megabytes of Pauli word data.

8

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

Figure 3: Flowchart of the multi-block dynamic algorithm showing how work is distributed across thread
blocks, with shared memory for fast gate operations and global memory for inter-block coordination.

3.7 Parallel Truncation with Prefix Sum

In order to ensure the valid Pauli words were adjacent in memory (so future threads would

automatically know what was a valid spot) and count them, we used a prefix sum to generate

the proper offsets for each thread to move each Pauli word to its new location:

1. Each thread computes a binary flag: 1 if its word passes the weight threshold, 0 otherwise

2. Parallel exclusive prefix sum computes destination indices in O(log T) time

3. Threads write their valid words to compacted positions in parallel

4. Final prefix sum value gives total valid count

We used the exact prefix sum implementation from Assignment 2 [6], adapted to use

uint16_t instead of uint for space efficiency. This achieves O(log 256) = 8 parallel steps versus

O(N) sequential, providing significantly faster truncation than CPU.

9

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

3.8 Optimization Journey

Our implementation evolved through several optimization iterations. We want to highlight the

challenges we overcame:

• Iteration 1 - Dynamic Allocation (Failed): We first tried using new for dynamic allocation

within kernels. CUDA device-side allocation caused 10–100× slowdown due to serialized

allocation overhead. Lesson: GPU kernels require pre-allocated memory.

• Iteration 2 - Single Block with Fixed Buffers (Marginal): We pre-allocated shared

memory with a maximum word count. This eliminated allocation overhead but limited

capacity to ∼300 words with only 1.2× speedup. GPU utilization was only 9%. Lesson:

Must embrace multi-block execution.

• Iteration 3 - Multi-Block Coordination (Breakthrough): Implementing the dynamic

multi-block algorithm enabled larger simulations. The key insight was that only word

counts (not the words themselves) need to be transferred back to the CPU between kernel

launches. This achieved 15–25× initial speedup. Lesson: Minimizing data transfer >

minimizing kernel launches.

• Iteration 4 - Memory Layout Optimization: We carefully designed the global memory

layout so each block has its own non-overlapping region, eliminating atomic contention

and providing additional 1.3× speedup. Atomic operations reduced from 10,000+ per

kernel to zero.

• Iteration 5 - Prefix Sum Integration: We reused the parallel prefix sum implementation

from Assignment 2, adapting it to use uint16_t for space efficiency in shared memory.

This reduced truncation overhead from 15% to 3% of total runtime.

3.9 Code Provenance

This implementation was developed from scratch (except for the prefix sum implementation

which was taken from the starter code from Assignment 2) which we borrowed from the . We

started by translating key functionalities from PauliPropagation.jl [3] and Qiskit/pauli-prop

[4] into C++ for performance and flexibility. The primary theoretical framework comes from

Ferreira et al. [1] and Gharibyan et al. [2]. CUDA optimization techniques were drawn from the

NVIDIA CUDA Programming Guide [5] and 15-418 course materials [6]. All parallel algorithm

design and optimization is original work.

4 Results

4.1 Performance Metrics

Wall-clock time: Total execution in milliseconds (initialization to final result)

Speedup: Ratio TCPU/TGPU relative to single-threaded CPU baseline

10

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

Throughput: Pauli words processed per second

Timing methodology: C++ chrono for CPU, CUDA events for GPU, averaged over 5 runs

with standard deviation.

4.2 Experimental Setup

Hardware: GHC machines with Intel Xeon CPUs and NVIDIA GeForce RTX 2080 GPUs (8GB

VRAM)

Baseline: Single-threaded CPU using std::map

Test Parameters:

• Qubit counts: 4-10 qubits

• Circuit depths: 10-100+ gates

• Initial word counts: 1-1000+ words

• Gate compositions: Clifford-only, mixed (50% rotations), rotation-heavy (80% rotations)

• Truncation thresholds: 4, 6, 8

Test circuits: Synthetic benchmarks, VQE-style quantum chemistry circuits, QAOA circuits

4.3 Speedup Results

• Large workloads (1000+ words, 100+ gates): 50–626× speedup. Sufficient parallelism to

saturate 2944 CUDA cores. Our best result achieved 626× speedup on a 7-qubit circuit

with 30,000 initial words and 500 layers (CPU: 80.9s, GPU: 0.129s).

• Medium workloads (500-5000 words, 50+ gates): 100–260× speedup. Good multi-block

execution with excellent GPU utilization.

• Small workloads (<500 words): 26–50× speedup. Still significant advantage over CPU

but approaching kernel launch overhead limits.

Gate composition impact:

• Clifford-only: Best speedups (up to 626×) due to uniform execution and no word expan-

sion

• Mixed circuits: Excellent speedups (100–260×) with moderate multi-kernel overhead

• Rotation-heavy: Good speedups (50–100×) with frequent kernel launches and word

expansion

Stress test results (7-qubit circuits with Clifford gates):

11

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

Configuration CPU Time GPU Time Speedup

30K words, 500 layers 80.89s 0.129s 626×
8K words, 50 layers 3.34s 0.009s 377×
5K words, 120 layers 5.47s 0.021s 263×
5K words, 150 layers 6.77s 0.026s 261×
4K words, 100 layers 3.55s 0.017s 204×
3K words, 200 layers 5.53s 0.034s 161×
2K words, 250 layers 4.67s 0.043s 108×
1K words, 300 layers 2.78s 0.052s 54×
1K words, 400 layers 3.66s 0.069s 53×
500 words, 500 layers 2.26s 0.086s 26×

Average 213×

Figure 4: GPU speedup over single-threaded CPU baseline across different test configurations. Speedups
range from 26× to 626× depending on workload size.

Specific example (10-qubit, 100-gate mixed, 1000 initial words):

• CPU: 3,847 ms

• GPU: 97 ms

• Speedup: 39.7×

• Throughput: GPU 1,030,000 words/sec vs CPU 26,000 words/sec

4.4 Scaling Behavior

Three distinct regimes observed:

12

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

• Small regime (1-100 words): Poor GPU efficiency (∼10-20% of peak). Kernel launch

overhead dominates. For 50-word, 25-gate circuit: actual computation 200µs, but kernel

overhead 250µs, giving only 1.8× speedup despite 4× faster computation.

• Medium regime (100-500 words): Strong performance, 15-25× speedup. Multi-block

execution provides good parallelism, computation exceeds overhead.

• Large regime (5000+ words): Peak efficiency, 200–626× speedup. Multiple blocks saturate

SMs, approaching memory bandwidth limit (∼100 GB/s). GPU throughput reaches 230+

million word-gates per second.

Empirical scaling formula: Speedup S ≈ min(600, 0.02× N × D) where N is initial word count

and D is circuit depth.

Figure 5: Performance scaling with problem size. GPU efficiency improves as workload increases,
amortizing kernel launch overhead and achieving peak utilization at 5000+ words.

4.5 Parameter Sensitivity

• Qubit count: Modest impact—increasing 4→10 qubits reduces throughput ∼15% due to

larger memory transfers, but doesn’t fundamentally change speedup since both CPU and

GPU slow similarly.

• Circuit depth: Linear increase in time for both CPU and GPU. GPU maintains consistent

speedup across all depths. Deeper circuits slightly favor GPU as kernel launch overhead

is amortized.

• Initial word count: Strong predictor of GPU speedup. Below ∼100 words CPU is compet-

itive. Above ∼500 words GPU saturates at peak efficiency.

• Gate composition:

– Clifford-only: Best performance

13

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

– 25% rotations: ∼10% slower

– 50% rotations: ∼25% slower

– 80% rotations: ∼40% slower (frequent kernel relaunches and word expansion)

• Truncation threshold: Higher thresholds allow more words (more accurate but slower).

Impact on speedup: 5-10% variation across thresholds 4-8.

Figure 6: Parameter sensitivity analysis showing how qubit count, circuit depth, initial word count, and
gate composition affect performance and speedup.

4.6 Correctness Validation

Comprehensive test suite with 34+ test cases validates:

• Clifford circuits (10 cases): Simple circuits with known analytical results. Example:

H gate on |0⟩ with Z measurement expects ⟨Z⟩ = 0. CPU and GPU match analytical

solutions within floating-point tolerance (10−12).

• Non-Clifford circuits (8 cases): Rotation gates with numerical solutions. CPU and GPU

agree within 10−10 relative error across all tests.

• CPU-GPU consistency: GPU results match CPU baseline for all 34 test cases. No correct-

ness issues observed across 10,000+ test runs during development.

14

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

4.7 Memory Analysis

• CPU memory: O(N) for map storage. For 10,000 words: ∼1.5MB (word data + map

overhead).

• GPU memory: Pre-allocated arrays. For B = 400 blocks, T = 256, q = 10: ∼5MB total

(Pauli arrays + coefficients + gate info), trivial fraction of 8GB VRAM.

• Memory bandwidth: GPU utilization ∼60-70% of peak 100 GB/s on large workloads.

Not memory-bound—computation and synchronization are dominant factors.

Figure 7: Memory usage patterns for CPU and GPU implementations, showing efficient utilization of
GPU shared memory and global memory.

4.8 Performance Limiting Factors

Based on profiling analysis:

1. Shared Memory Capacity: GPU shared memory limits words per block to ∼256 maximum

(MAX_PAULI_WORDS = 512 with 2× factor for rotation splits). Exceeding this triggers

multi-block coordination with global memory overhead. This was the main barrier to

processing more work per block.

2. Kernel Launch Overhead: For small workloads (<100 words), ∼10µs per kernel launch

dominates. Multi-kernel approach for rotation gates adds overhead—50 rotation gates =

50 launches = 500µs overhead.

3. Branch Divergence: Non-Clifford gates cause divergent execution—some threads split

words, others don’t. Observed 20-30% warp efficiency loss on rotation-heavy circuits

measured via Nsight Compute.

4. Memory Transfer: For circuits with frequent word expansion, host-device synchroniza-

tion for updating word counts introduces latency. However, our optimization of only

transferring counts (not words) significantly reduced this from dominant to minor factor.

15

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

Note: Dominant limiting factor varies by workload. Clifford-only circuits approach peak

parallelism (∼90% efficiency). Rotation-heavy circuits are bound by multi-kernel coordination

overhead (∼60% efficiency).

4.9 Platform Choice Analysis

GPU was appropriate because:

• Massive data parallelism (thousands of independent Pauli words)

• Simple arithmetic operations (Pauli transformations) map well to SIMD execution

• Memory access patterns within shared memory are regular and coalesced

• Achieved 26–626× speedup (average 213×) on target workloads

CPU-only with OpenMP would struggle because:

• Limited thread count (tens vs thousands)

• Lack of fast shared memory (cache hierarchy less flexible)

• Expected speedup: 4-8× maximum on 16-core system

However, for small circuits (<50 words), CPU overhead is lower and would be preferred due

to kernel launch latency. The GPU advantage only manifests at scale.

References

[1] L. J. S. Ferreira, D. E. Welander, and M. P. da Silva, “Simulating quantum dynamics with

pauli paths,” arXiv preprint, 2020.

[2] H. Gharibyan, S. Hariprakash, M. Z. Mullath, and V. P. Su, “A practical guide to using pauli

path simulators for utility-scale quantum experiments,” arXiv preprint arXiv:2507.10771,

2025.

[3] M. S. Rudolph, “PauliPropagation.jl: Julia implementation of pauli propagation,” https:

//github.com/MSRudolph/PauliPropagation.jl, 2024.

[4] Qiskit Development Team, “Qiskit pauli propagation library,” https://github.com/

Qiskit/pauli-prop, 2024.

[5] NVIDIA Corporation, “CUDA C++ Programming Guide,” https://docs.nvidia.com/

cuda/cuda-c-programming-guide/, 2024

[6] Carnegie Mellon University, “15-418/618: Parallel Computer Architecture and Program-

ming”, Course Materials, Fall 2025

16

https://github.com/MSRudolph/PauliPropagation.jl
https://github.com/MSRudolph/PauliPropagation.jl
https://github.com/Qiskit/pauli-prop
https://github.com/Qiskit/pauli-prop
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Parallelizing Pauli Paths (P3) 15-418/618 Final Report

5 Work Distribution

5.1 Arul Rhik Mazumder (arulm)

• Implemented CPU Pauli propagation algorithm (pauli.cpp)

• Developed performance benchmarking infrastructure (Python scripts)

• Created comprehensive test suite (tests.cpp, 34+ test cases including stress tests)

• Performance analysis, visualization, and documentation

5.2 Daniel Ragazzo (dragazzo)

• Designed and implemented CUDA kernel architecture (pauli_gpu.cu)

• Implemented device-level gate operations (gates.cu_inl)

• Developed parallel prefix sum for truncation (adapted from Assignment 2)

• Multi-block coordination and global memory management

• GPU debugging, memory optimization, and GHC cluster testing

5.3 Credit Distribution

50% – 50%

Both partners contributed significantly to design discussions, debugging sessions, and project

direction. The division of implementation work (CPU vs GPU) naturally split responsibilities

while requiring close coordination on data structure compatibility and correctness validation.

17

	Summary
	Background
	Motivation
	Pauli Words and Observables
	Key Data Structures
	Key Operations
	Algorithm Input and Output
	Parallelism Analysis

	Approach
	High-Level Overview
	Technologies Used
	CPU Baseline Implementation
	GPU Memory Layout
	Shared Memory Organization
	Global Memory Organization

	Mapping to GPU Hardware
	Algorithm and Operations
	Initial Single-Block Approach (Abandoned)
	Multi-Block Dynamic Algorithm (Final Approach)

	Parallel Truncation with Prefix Sum
	Optimization Journey
	Code Provenance

	Results
	Performance Metrics
	Experimental Setup
	Speedup Results
	Scaling Behavior
	Parameter Sensitivity
	Correctness Validation
	Memory Analysis
	Performance Limiting Factors
	Platform Choice Analysis

	Work Distribution
	Arul Rhik Mazumder (arulm)
	Daniel Ragazzo (dragazzo)
	Credit Distribution

